LOK JAGRUTI UNIVERSITY (LJU)

INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Mechanical Engineering (710)

Bachelor of Engineering (B.E.) – Semester – V

Course Code:	017103591
Course Name:	Heat Transfer
Category of Course:	Professional Core Course (PCC)
Prerequisite Course:	Mathematics 1 (017101191), Physics (017101192), Electrical and Electronics Engineering (017102292), Thermodynamics 1 (017103301), Fluid Mechanics (017103491)

	Teaching Scheme				
Lectu re (L)	Tuto rial (T)	Pract ical (P)	ical Cre		
5	0	2	6	50	

Syllabus					
Unit No.	Торіс	Prerequisite Topic	Successive Topic	Teac hing Hour s	
	Conduction: 1-D Steady State H	eat Conduction			
	1.1 Modes of heat transfer1.2 Thermal conductivity and diffusivity				
	1.3 Heat conduction through plane and composite walls	Basic differentiation			
01	1.4 Heat conduction through hollow and composite cylinders and spheres 1.5 Electrical analogy and overall heat transfer coefficient	and integration (017101191-Unit-03)	2.4 Critical thickness of Insulation(017103591- Unit-02)	9 (18%)	
		DC circuits (017102292-Unit-01) Modes of heat transfer (017103591-Unit-1.1)			
	1.6 Critical thickness of Insulation	Steady state heat conduction (017103591-Unit-1.1, 1.2, 1.3)			
	Heat Transfer from Extended S	urface			
	2.1 Purpose of fins and heat flow through rectangular fin	Modes of heat transfer			
02	2.2 Infinitely long fin and fin insulated at the tip	(017103591-Unit-1.1), Basic differentiation		6 (12%)	
	2.3 Fin losing heat at the tip of finite length	and integration (017101191-Unit-03)			
	2.4 Efficiency and effectiveness of	All cases of fin			

	fin.	(017103591-Unit-2.1, 2.2, 2.3)		
	Conduction: Unsteady State Hea			
	3.1 Lump system	Heat capacity		
03	3.2 Transient heat conduction	(017103301-Unit-1), Basic differentiation and integration (017101191-Unit-03)		3 (6%)
	Convection: Forced Convection			
	4.1-Dimensional analysis applied to forced convection	Dimensional analysis (017103491-Unit-7)		
04	4.2 Dimensional less numbers- Reynolds, Prandtl, Stanton	Reynolds number (017103491-Unit-10.1)		5 (10%)
	4.3 Thermal and hydrodynamic boundary layer thicknesses			
	4.4 Empirical correlations for forced convection (Flat plate, cylinder, tube)			
	Convection: Free Convection			
	5.1-Dimensional analysis applied to free convection	Dimensional analysis (017103491-Unit-7)		
05	5.2 Characteristic length or equivalent diameter			5 (10%)
	5.3 Dimensional less numbers- Nusselt, Grashoff, Prandtl			(10/0)
	5.4 Empirical correlations for free convection (Flat plate, cylinder, tube)			
	Thermal Radiation: Basic Relations			
	6.1 Electromagnetic waves and its spectrum	Waves (017101192- Unit-05)		
	6.2 Stefan-Boltzmann law	Modes of heat transfer (017103591-Unit-1.1)		
06	6.3 Radiation properties (Emission properties absorption and reflection of radiant energy, emission, black and non-black bodies)	Waves (017101192- Unit-05)		5 (10%)
	6.4 Laws of radiation – Planck, Wein's displacement, Kirchhoff			
	6.5 Intensity of radiation and solid angle, Lambert's cosine law.	Trigonometry and geometry (017101191-Unit-02)		
	Thermal Radiation Between Sur	rfaces		
07	7.1 Radiation heat exchange between black surface	Intensity of radiation and solid angle (017103591-Unit-7.5)		
	7.2 Geometric configuration factor			_
	7.3 Grey body radiation exchange between surfaces of unit configuration factors			5 (10%)
	7.4 Electrical analogy to simple problems and radiation shield	DC circuits (017102292-Unit-01)		
	Heat Exchangers analysis by LN	ATD Method		5
08				

-				
	exchanger	(017103301-Unit-1)		
	8.2 LMTD calculation for parallel	Heat capacity	9.1 & 9.2 Effectiveness	
	flow heat exchanger	(017103301-Unit-1),	– NTU method for	
	8.3 LMTD calculation for counter	Basic differentiation	parallel &counter flow	
	flow heat exchanger	and integration	heat exchanger	
	now heat exchanger	(017101191-Unit-03)	(017103591-Unit-09)	
	8.4 Fouling factors and overall heat			
	transfer coefficient			
	Heat Exchangers analysis by NT	ΓU Method		
	9.1 Heat exchanger Effectiveness &			
09	Number of transfer unit			5
	9.2 Effectiveness – NTU method for	LMTD for Parallel &		(10%)
	parallel flow heat exchanger	Counter flow Heat		(1070)
	9.3 Effectiveness – NTU method for	<i>U</i> \		
	counter flow heat exchanger	Unit-08)		
	Application of Solar Heat Trans	sfer (Only Theory)		
	10.1 Introduction			
10	10.2 Solar Radiation Geometry			
	(Altitude angle, Zenith angle,			
	Azimuth angle)			2
	10.3 Natural Circulation Solar Water			(4%)
	Heater			(470)
	10.4 Forced Circulation Solar Water			
	Heater	(017103591-Unit-01)		
	10.5 Passive Solar Distillation (Single			
	slope solar still)			

Major	Major Components/ Equipment		
Sr. No.	Component/Equipment		
1	Thermal conductivity measuring apparatus by spherical method		
2	Thermal conductivity measuring apparatus by cylindrical method		
3	Pin fin apparatus		
4	Natural convection apparatus		
5	Forced convection apparatus		
6	Stefan-Boltzmann apparatus		
7	Emissivity measurement apparatus		

Sr No.	Practical Title	Link to Theory Syllabus
1	To find thermal conductivity of insulating powder by spherical method	Unit-1
2	To find thermal conductivity of a given insulating materials by cylindrical method	Unit-1
3	To find heat transfer through pin fin apparatus	Unit-2
4	To find surface heat transfer coefficient for force convection heat transfer	Unit-4
5	To find out coefficient of natural convection	Unit-5
6	To find emissivity of given plate	Unit-6

7	To find Stefan Boltźman constant by Stefan Boltźman apparatus	Unit-6
8	To determine heat loss in Pipe-in-Pipe heat exchanger	Unit-8

Proposed Theory + Practical Evaluation Scheme by Academicians (% Weightage Category Wise and it's Marks Distribution)

L: 5 T: 0 P: 2

Note: In Theory Group, Total 4 Test (T1+T2+T3+T4) will be conducted for each subject.

Each Test will be of 25 Marks.

Each Test Syllabus Weightage: Range should be 20% - 30%

Group (Theory or Practical)	Group (Theory or Practical) Credit	Total Subject Credit	Category	% Weightage	Marks Weightage
Theory			MCQ	16%	<mark>19</mark>
Theory			Theory Descriptive	0%	0
Theory	5		Formulas and Derivation	34%	40
Theory			Numerical	34%	<mark>41</mark>
Expected Theory %	84%	6	Calculated Theory %	84%	100
Practical			Individual Project	0%	0
Practical			Group Project	0%	0
Practical	1		Internal Practical Evaluation (IPE)	11%	70
Practical			Viva	5%	30
Practical			Seminar	0%	0
Expected Practical %	16%		Calculated Practical %	20%	100
Overall %	100%			100%	200

Cou	Course Outcome		
	Upon completion of the course students will be able to		
1	identify the modes of heat transfer for given practical applications		
2	analyze the performance of convective heat transfer coefficient for free and force convection.		
3	apply the concepts of radiation heat transfer phenomena.		
4	evaluate and design of heat exchanger and understand the basic concept of heat transfer for solar		
	thermal applications.		

Sugg	Suggested Reference Books		
1	Heat and Mass Transfer by R K Rajput, S.Chand Publication		
2	Heat and Mass Transfer: Fundamentals and Application by Yunus Cengel, McGraw Hill		
3	Heat and Mass Transfer by P.K. Nag, McGraw Hill		
4	Heat Transfer by J P Holman, McGraw Hill		
5	Heat Transfer: Principles and Applications by Dutta, Binay K, PHI Publication		
6	R. C. Sachdeva, Fundamentals of Heat and Mass Transfer, New Age International Publications,		
	2012.		

List	List of Open Source Software/Learning website	
1	nptel.ac.in	
2	Cosmolearning.org	
3	www.learnerstv.com	
4	MIT OCW lecture on introduction to heat transfer	
5	Engineering Wikia-Heat Transfer	
6	Heat and Mass Transfer – Mechanical Engineering Handbook	

Practical Project/Hands on Project			
Sr. No.	Project List	Linked with Unit	
1	Measure the Thermal Conductivity of a Material. Determine the thermal conductivity of the sample with the help of thermocouple and heater.	Unit 01	
3	Heat Loss through a Wall Find out heat loss from the wall of your house on particular day. Data needs 1. Hight, Width and Thickness of the wall 2. Thermal conductivity of the material of the wall Inner and outer surface temperature of the wall Increase heat transfer rate of radiator wall by using extended surfaces. (Fins) Data needs 1. Temperature of wall	Unit 01 Unit 02	
4	2. Extended surface's material properties and dimensions Surrounding fluid thermal properties Predicting the Time of Death A person is found dead at particular time in a room. From the temperature of the body	Unit 03	
5	find out the time when he was died Cooling by Forced air If there is a hot cup of tea on a table under a fan. Find out heat transfer rate by convection mode of heat transfer for both conditions. 1. When fan is off 2. When fan is on	Unit 04,05	

6	Emission of Radiation (Visible Range) from a Lightbulb The temperature of the filament of an incandescent lightbulb is 2500 K. Assuming the filament to be a blackbody, determine the fraction of the radiant energy emitted by the filament that falls in the visible range	Unit 06,07
7	Design Heat Exchanger Design heat exchanger for cool of hot water.	Unit 08,09
	Heat Transfer Analysis of Solar Water Heater	
8	To understand heat transfer analysis of Solar water heater.	Unit 10